Combining multiple parameters of Optical Coherence Topography using the “Random Forest” decision tree method improves the diagnosis of glaucomatous visual field damage
Tatsuya Yoshida
Department of Ophthalmology, The University of Tokyo, Tokyo - Japan

Purpose: To develop a classifier to discriminate glaucomatous patients and normative subjects based on optical coherence tomography (OCT) measurements using the machine learning method known as the “Random Forest” (RF) algorithm.

Methods: Spectral domain OCT (Topcon 3D OCT-1000 and 2000) and perimetry (Humphrey Field Analyzer, 24-2 SITA standard) measurements were conducted in 124 eyes of 124 patients with open angle glaucoma (60.1 ± 13.1 years old) and 86 eyes of 86 normative subjects (52.6 ± 15.6 years old). The RF method was then used to discriminate glaucoma and normal subjects using 223 different OCT parameters consisted of macular retinal nerve fiber layer (m-RNFL) thickness, ganglion cell layer and inner plexiform layer (GCL+IPL) and circumpapillary RNFL (cp-RNFL). The area under the receiver operating characteristic curve (AROC) was then derived using the probability of glaucoma as suggested by the proportion of votes in the RF classifier, in leave-one-out cross validation. For comparison, AROCs were derived based on the raw values of 223 single OCT parameters.

Results: The AROC associated with the OCT parameters were: total m-RNFL (93.4%), superior half m-RNFL (80.2%), inferior half m-RNFL (91.4%), total GCL+IPL (89.4%), superior half GCL+IPL (79.4%), inferior half GCL+IPL (91.8%), total cp-RNFL (92.8%), superior quadrant cp-RNFL (73.6%) and inferior quadrant cp-RNFL (82.6%), respectively. Among 223 OCT parameters, the largest AROC (94.3%) was obtained with the m-RNFL in an inferior temporal sector. The AROC from the Random Forest classifier (98.6%) was significantly larger than any AROCs associated with single OCT parameters (p < 0.001). In the ROC, the sensitivities were 98.8 / 80.1 % (RF / best single OCT parameter) at the specificity of 90%, and 92.9 / 65.5 % (RF / best single OCT parameter) at the specificity of 95%, respectively.

Conclusions: Evaluating multiple OCT measurements using the RF method provides an accurate diagnosis of glaucoma.